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Abstract. An investigation is made of the rate at which the number of counts in consecutive 
sample times in a photon counting experiment is found to lie on either side of a fixed level. 
The same method is used to generalise the conventional theory of zero-crossings of an 
analogue signal to include finite processing bandwidth. In this case the resulting formulae 
are applicable to certain situations of practical importance, such as the Lorentzian spectrum, 
which have previously given singular results. 

1. Introduction 

It is well known that a randomly varying signal V ( t )  is completely specified by a 
knowledge of the joint probability distributions P({ V(fi)}). These allow moments and 
correlation functions of any order to be calculated. In the field of optical signal 
processing, early photon counting experiments investigated the simple probability 
distribution p ( n ;  T) of the random variable n of counts arriving in a sample time T 
(Johnson er a1 1966), and more recently the measurement of more complicated 
statistical properties of the photon arrival rate, such as ‘scaled’ and ‘clipped’ photon 
correlation functions, has become more commonplace for various practical applications 
in spectroscopy (Cummins and Pike 1974). 

One property which has not yet been investigated in the photon counting context is 
the quantity corresponding to the zero-crossing rate of an analogue signal. A long- 
standing interest in the latter stems in part from the use of various forms of zero- 
crossing detector in radar and communications systems (Skolnik 1962). The early 
results of Rice (1945) and others on the subject now appear in standard texts on 
communication theory (e.g. Middeton 1960). For example, the average number of 
zeros per second A, of a Gaussian random signal V(r) with zero mean and correlation 
coefficient, 

may be expressed in the form 

t On leave from Wellesley College, Wellesley, Mass. USA, 
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The question arises as to whether formulae of this type exist which may be of interest 
for optical systems. In this paper we shall establish formulae analogous to (1)for the rate 
at which the number of photon detections in time T crosses a fixed 'clip' level. 
Experimental data will be presented which support satisfactorily the theoretical results. 
Our analysis takes finite sample time and finite area effects into account for a Lorentzian 
spectral profile and sheds some light on the apparent breakdown of equation (1) for this 
type of spectrum in the conventional analysis. 

2. Level-crossing formula 

In a typical photon counting experiment we measure the random number of counts n ( t )  
registered by the photodetector at a time t and within a fixed sample time T. The result 
of such a measurement taken over many consecutive non-overlapping sample intervals 
yields a photon count rate such as that shown in figure l ( a ) .  By introducing a clip level k 
we may define the clipped photon count rate nk(t) (Jakeman and Pike 1969) such that 

if n ( t ) >  k 

if n ( t )  s k .  
Figure l(6) illustrates the clipped photon count rate n k ( t )  corresponding to the count 
rate n ( t )  in figure l(a). 

Consider N instants of time t i( i  = 1, . . . , N )  belonging to consecutive sample 
intervals. It follows from the definition of the clipped count rate nk(t) that 

N 

i = l  
(nk (t i)  - nk (ti - T))nk ( t i )  = Nu, 

where Nu, is the number of times during N sample intervals that the count rate n ( t )  
crosses the clip level k from below. We take the average over an ensemble of identical 

I la' 

t 
T 

Figure 1. Typical photon count rate n(t) and the corresponding clipped count rate n k ( t ) .  



is the double-clipped photon correlation &dnction ( 
N - .  CO, equation (5) becomes 

&= 2((nk)-Gkk(T)) 
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(6 ) 

ikeman and Pike 1969). Letting 

where iiX is the mean number of times during one sample interval T that the photon 
count rate n( t )  crosses the clip level k. 

In order to evaluate fix from equation (7), equation ( 2 )  is used to show that 

where p ( n ,  m ;  T )  is the joint probability of counting n photoelectrons in one sample 
interval at time t together with m photoelectrons in one sample interval at time t + T. 
Thus equation (7) may be written in the form 

expressing the mean number of clip-level crossings per sample time in terms of the 
photon counting distributions. 

3. Crossing rates for Gaussian-Lorentzian light 

The photon counting probabilities which appear in equation (10) may be expressed in 
terms of their corresponding generating functions (Glauber 1963) as 

and 

( - ( ~ ) " ( - a ) ~  d" dm 
p ( n ,  m ;  T)=---- Q(s,s'; T ) /  . n !  m !  dSnds" s = s ' = a  
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In the case of Gaussian light with a Lorentzian spectral profile, Jakeman (1970) gives 
the generating function corresponding to the joint photon counting probability 
p ( n ,  m ;  T),  namely 

Q(s, s'; T)=Qo(s, s'; T ) - ; p  2 2  A Qo(s, 2 s'; T ) [ s " + ~ ~ + ( ~ i i ~ ~ ' ( ~ + ~ ' ) ( l - l g ~ , ' , ( T ) l ' ) l  

(13) 

(14) 

where 
2-2 I (1) T 2 -1 ~ ~ ( s , s ' ;  ~ ) = [ ( l + a n s ) ( l + a n s ' ) - a  n ss J g d  >I ] . 

In equations (13) and (14) a is the quantum efficiency of the detector, f i  is the mean 
count rate and 

gZr(T)= exp(-TT+iwoT) (15)  

is the field correlation function corresponding to a Lorentzian spectrum of width r 
centred about the frequency wo. This generating function takes account of the small but 
finite sample time T and equation (13) is an expansion of the exact formula to the first 
order in y = rT. 

Since equations (13) and (14) are valid strictly only when the area of the detector is 
infinitely small, a suitable correction must also be introduced to allow for the finite 
detector area. Following the work of Jakeman eta1 (1971) this may be achieved by using 
the amended generating function 

(d(s, s'; T))" (16) 

where the non-integral parameter 7 represents the number of coherence areas in the 
detector area and d(s, s'; T )  is just the generating function given by equations (13) and 
(14), with the quantity rrii everywhere replaced by aii/q. 

In our calculations the photon counting probabilities are evaluated analytically 
using the generating function (16) and the relationships (11) and (12) and thus Ex is 
written as a function of the basic parameters f i ,  k,  y and 7. The resultant expression, 
although easily derived, is lengthy and involves a number of finite triple summations; it 
is not given here but was easily translated into a short computer program. 

For small a the expression is more tractable and takes the form 

where 

ati 
77 

x = -  y = l+x( l - lggr(T) /2)  

2 = l + x ( l + y )  (19) 

[ n ,  m ]  means the lesser of n and m, and (7)" is the Pochammer notation for 
~ ( 7 7  + 1)(7 + 2 ) .  . . (q + n  - 1). 
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4. Experiments 

A number of experiments were carried out in order to verify these results. A 
Gaussian-Lorentzian light source was provided by scattering laser light from mac- 
romolecules (PSL spheres) undergoing Brownian motion in solution. A Malvern 
correlator system 4300 (manufactured by Malvern Instruments, Malvern, Worcs) was 
used to measure y in the usual way (Blagrove et a1 1970) by analysis of the single- 
clipped photon correlation function. The preset clip level k was chosen at different 
levels near the mean number of counts per sample time, n, which was also recorded in 
monitor channels of the instrument. The zero-crossing rate was measured by 

Table 1. Rate of clip-level crossings A, . t  

n k Y  11 Calculated Experimental 
value of A, value of A. 

1.7 

6.5 

1.8 

2.5 

9.6 

6.4 

6.4 

0.02 17 

0.0357 

0.0217 

0.313 

0.0556 

0.0357 

0.0357 

1.0 
1.1 
1.2 

1.3 

1 .o 
1.1 
1.2 

1.3 

1 .o 
1.1 
1.2 

1.3 

1.0 
1.1 
1.2 

1.3 

1 .o 
1.1 
1.2 

1.3 

1.0 
1.1 
1.2 

1.3 

1 .o 
1.1 
1.2 

1.3 

0.2 12 0.229 
0.219 
0.226 

0.232 

0.164 0.176 
0.170 
0.176 

0.181 

- 

- 

0.159 0.161 
0.164 
0.167 

0.170 
- 

0.196 
0.203 
0,210 

0,216 

0.171 
0.176 
0.182 

0.187 

0.136 
0.140 
0.144 

0.148 

- 

- 

- 

0.209 

0,182 

0.142 

0.149 0.158 
0.154 
0.159 

0.164 

t A is the mean photon count-rate; k is the clip level; y = TT, where Tis sample time 
and r is Lorentzian spectral width; 7 is the number of coherence areas of the 
detector. 
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I 

accumulating the shift register output in a further monitor channel of the correlator. 
The value of 77 due to spatial averaging by the detector can easily be measured 
geometrically; it can also be found by measuring the intercept on the zero delay time 
axis of the correlation function (Jakeman et a1 1971, equations (12) and (14)). In the 
present experiments a value of 77 = 1.2 was used. In order to illustrate the dependence 
of fix on 77 computations were performed at different values of 77 between 1.0 and 1.3 as 
shown in table 1. At the value of 77 = 1.2, good agreement is seen to be obtained 
between the calculated and measured values of fix over the entire range of parameters 
chosen in this set of experiments giving an independent check on the procedures 
adopted. 

5. Dependence on clip level and detector area 

Further calculations were carried out to study the dependence of ex on both the clip 
level k and the detector area parameter 9. In these calculations the value of y = I'T was 
small and the contribution from the second term in equation (13) was found not to be 
important. 

The behaviour of 2, as a function of the clip level k is plotted in figure 2 for different 
values of the mean count rate 2, where we have taken the area parameter 77 = 1.0 and 
y = 0.01. For small values of 2, the probability of obtaining more than one count in each 
sample time is low and so the number of clip-level crossings falls off rapidly as the 
clipping level is increased from 0. However at fi = 10, where the probability of obtaining 
few counts per sample time is small, the number of clip-level crossings rises as the 
clipping level k is increased from 0 and reaches a maximum when k = 5 .  

In figure 3 the number of clip-level crossings per sample time is plotted as afunction 
of the detector area parameter for different values of 2/77, the mean count rate per 

0 2 L 6 8 10 
Clip level. k 

Figure 2. Number of clip-level crossings per sample time ri,  as a function of the clip level k .  
y = 0.01, 7 = 1.0; the curves are labelled with values of A. 
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Number of coherence areas, q 

Figure 3. Number of clip-level crossings per sample time A, as a function of the detector 
area parameter 7) .  Clip level k = 1, y = 0.01; the curves are labelled with values of A / q .  

coherence area of the detector. The clip level is chosen to be 1 with y = 0.01. When 6/77 
is small, increasing the area of the detector causes the mean count rate ii of the 
experiment to increase and so the number of clip-level crossings is seen to rise. When 
ti/q = 1.0, Ax  rises as q is increased from 1.0 but at a value of q = 2.1,  fix reaches a 
maximum before starting to decline. In this case, where the value of i i /q  is larger, not 
only does the increase in area of the detector increase the mean count rate A of the 
experiment but, in addition, the signal fluctuations begin to average out thus causing the 
number of clip-level crossings to decrease. When A / q  is large the effect of averaging 
out information in the signal is dominant and A, decreases as q is increased from 1.0. 

6. Zero-crossing formula for analogue signals 

A similar approach to that taken in 0 2  may be employed to investigate the expected rate 
at which a Gaussian distributed random signal V(t )  of zero mean crosses zero. Thus, 
implicit in this analysis is a finite time of measurement T which must exist in any real 
experimental situation and which, in certain cases, has important consequences for the 
results. The signal V(t )  is sampled in consecutive finite time intervals T. In each 
interval [nT, (n + 1)T] the value at nT is measured and thus the clipped signal Vo(t)  is 
obtained (see figure 4) where we define 

if V(nT)>O 
if V(nT)<O V&) = { +l 

-1 

For N instants of time ti(i = 1, . . . , N )  belonging to consecutive intervals T it follows 
from this definition that 

N 

1 Vo(ti)(Vo(ti)- Vo(ti - TI) = 2N.x (21) 
i = l  
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Figure 4. Random signal V(r) and the corresponding clipped signal Vo(t). 

where N ,  is the number of times during N sample intervals that the measured signal 
crosses zero. Assuming stationarity and taking N to be large it follows that 

f i x  = 4<< v3 - Goo(T)) (22) 
where E x  is the mean number of times that the measured signal crosses zero during one 
sample time, 

Goo(T) = (Vo(t) vo(t f TI) (23) 
and the angle brackets, as before, denote the average over a large ensemble of identical 
experiments. Now from equation (20) 

Goo(T) =(Vo(f)Vo(f+T))=(Vo(nT)Vo((n + UT)) (24) 
and, since nT, (n + l )T  are points on which V ( t )  has been measured, it follows from the 
theorem of Van Vleck and Middleton (1966) that 

Substituting this relationship into equation (22), and noting from equation (20) that 
(Vi) = 1, we find that the expected number of zero-crossings per unit time is given by 

As the sample time T-, 0, g ( T )  + 1 and so 

sin-’[(1 - g 2 ( T ) ) ’ l 2 ]  

=(1 -g2(T))1/2[1+,(l-g2(T))] 

= (-2Tg’(O) +3T2g’(0)’- T2gy0))1’2. 
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Therefore 
1/2 

and so as T + 0 the expected rate of zero-crossings is finite only if g’(0)  = 0, in which case 

This result, which holds only when g”(0) is negative, is identical to that obtained by Rice 
(1945). 

We now show that the condition g‘(O)=O is equivalent to requiring the mean 
squared value (V‘(t)’) of the slope of a random signal to be finite. Since 

V(t + T )  - V(t) 
T 

V’(t) = lim 
T+O 

then 

i.e. 

Hence, since g(T) + 1 as T + 0, (V’(t)’) is finite only if, for small T, the quantity 1 -g(T)  
is of at least second order in T. Thus (1 -g(T)) /T is of at least first order in T which 
implies that g’(0) = 0. 

Rice (1945) has pointed out that equation (30) does not hold for certain important 
spectra such as the Lox‘entzian, in which case g’(0) is negative and g”(0) is positive. 
However, if the effect of finite sample time Tis included, equation (26) may be applied 
and we see that for small T 

T I T  (34) 

This holds when g‘(0) is negative, as for a Lorentzian spectrum, giving a large but finite 
‘number of zero crossings. Thus if 

so that 

(36) g(T) = e-*WaT 

then g’(0) = - 2 r a  and so the expected rate of zero crossings is given by 

This result also follows from Rice’s analysis when it is generalised to take account of a 
small but finite time of measurement. In spectral terms, a finite time of measurement T 
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corresponds to an upper frequency F which is the Nyquist frequency (Kendall and 
Stuart 1966) given by 

F = 1/2T. (38) 

Inserting, therefore, this finite upper frequency, Rice's expression (equation (3.3-1 1)) 
for the expected number of zero crossings per second becomes 

which may be integrated using equation (35) to give 

since F is large. In terms of the sample time T we have 

n 1/2 
' = 2 ( 5 )  T 

which is the result obtained in equation (37). 
Since real correlation functions must have zero slope at the origin in order to ensure 

causal behaviour (Rice 1945), i t  is not possible in theory to have a Gaussian distributed 
random signal with a completely Lorentzian spectral profile. However, in many 
physical experiments an apparent behaviour of this kind is observed due to the finite 
response time of the apparatus. It is never physically possible to measure the slope of a 
real correlation function exactly at the origin since lim,,,, ( g ( T )  - g ( O ) ) / 7  cannot be 
attained due to the existence of a finite integration time which bounds T from below, 
and if this time is sufficiently long compared with the duration of reversible processes, 
then these apparently non-physical correlation functions are obtained. In such cases 
the number of zero crossings per second will be given by equation (29) above. 

7. Conclusions 

We have derived general expressions for clip-level crossing rates of Gaussian signals, 
both analogue and digital, taking account of finite detection integration time. Simple 
circuits which measure these crossing rates can, therefore, be used to measure the 
linewidth of signals of known spectral shape. It is interesting to note that in the case of a 
spectrum consisting of a sum of Lorentzians, the slope g' (0)  of the correlation function 
at the origin, which may be obtained from the crossing rate (equation (34) or equation 
(7)  in the limit T+ 0), is of direct physical interest as a useful weighted mean linewidth 
(see, for example, Pusey 1977). 

In the case of optical signals the relation (7) shows that the information contained in 
tix can also be obtained by simultaneous measurement of Gkk(T) and ( n k )  which is 
experimentally of the same order of complexity. The first two channels of a standard 
single-clipping correlator or even the second moment of a photon counting distribution 
provide similar information. The relative accuracies of linewidth measurements made 
by any of these methods might be expected to be of comparable magnitude. 
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